Parallel Implementation of the Discontinuous Galerkin Method
نویسندگان
چکیده
This paper describes a parallel implementation of the discontinuous Galerkin method. The discontinuous Galerkin is a spatially compact method that retains its accuracy and robustness on non-smooth unstructured grids and is well suited for time dependent simulations. Several parallelization approaches are studied and evaluated. The most natural and symmetric of the approaches has been implemented in an object-oriented code used to simulate aeroacoustic scattering. The parallel implementation is MPI-based and has been tested on various parallel platforms such as the SGI Origin, IBM SP2, and clusters of SGI and Sun workstations. The scalability results presented for the SGI Origin show slightly superlinear speedup on a fixed-size problem due to cache effects.
منابع مشابه
A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations
In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...
متن کاملEfficient Matrix-free Implementation of Discontinuous Galerkin Methods for Compressible Flow Problems
We discuss the matrix-free implementation of Discontinuous Galerkin methods for compressible flow problems, i.e. the compressible Navier-Stokes equations. For the spatial discretization the CDG2 method and for temporal discretization an explicit Runge-Kutta method is used. For the presented matrix-free approach we discuss asynchronous communication, shared memory parallelization, and automated ...
متن کاملDiscontinuous Galerkin methods on graphics processing units for nonlinear hyperbolic conservation laws
We present a novel implementation of the modal discontinuous Galerkin (DG) method for hyperbolic conservation laws in two dimensions on graphics processing units (GPUs) using NVIDIA’s Compute Unified Device Architecture (CUDA). Both flexible and highly accurate, DG methods accommodate parallel architectures well as their discontinuous nature produces element-local approximations. High performan...
متن کاملHigh performance computing aspects of a dimension independent semi-Lagrangian discontinuous Galerkin code
The recently developed semi-Lagrangian discontinuous Galerkin approach is used to discretize hyperbolic partial differential equations (usually first order equations). Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes (which are usually based on polynomial or spline...
متن کاملA Three-Dimensional Recovery-Based Discontinuous Galerkin Method for Turbulence Simulations
Discontinuous Galerkin (DG) methods have recently received much attention because of their portability to complex geometries, scalability in parallel architectures and relatively simple extension to high order. However, their implementation for compressible turbulence problems is not straightforward, e.g., due to parameter-free limiting for orders greater than first and the lack of a consistent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994